
- MyCPU -
Microcode 2.3 Reference

Dennis Kuschel
Corintostraße 21
28279 Bremen

Germany

dennis_k@freenet.de
http://www.mycpu.eu

Architecture 8 bit data, 16 bit addresses, similar to Harvard

Maximum Speed 8 MHz, depends on speed of EPROMs

Program Memory max. 64 kb addressable ROM

Data Memory max. 64 kb addressable RAM or IO

Registers hardware level: 5 general purpose registers, 1 constant register

software level: 1 accumulator, 2 index registers, 1 stack pointer

Arithmetic high speed ALU, maximum execution time = 3 cycles (375ns at 8MHz)

logical speed: 0.8 million multiplications per second (faster than a 8051!)

Interrupts 1 mask-able hardware interrupt, 1 software interrupt, system reset

Stack 256 byte in conventional data memory (0100h-01FFh), programmable

Addressing Modes 14 Addressing Modes: immediate 16bit, immediate 8bit, immediate zeropage,

 direct absolute, direct zeropage, direct absolute plus index, indirect absolute,

 indirect zeropage, indirect absolute plus index, indirect zeropage plus index,

indirect plus index absolute, absolute pointer 16bit, absolute pointer 8bit,

 immediate registers

Instruction Set 256 OP-Codes, average 6.9 cycles per instruction (normal program code)

9 OP-Codes are still undefined and can be defined by the user:

77h, 87h, 97h, A7h, B7h, C7h, D7h, E7h, F7h

2015-07-25 Page 1

DATA-TRANSFER MyCPU OP-Codes

Mnemonic Function Description OP Flags Bytes Cycles

CLA 0 -> A clear Accu 2C V, Z 1 3

CLX 0 -> X clear X-Register 2D V, Z 1 3

CLY 0 -> Y clear Y-Register 2E V, Z 1 3

LDA #data data -> A load Accu immediate 30 V, Z 2 4

LDA (ZP) ((ZP)) -> A load content of RAM indirectly
addressed by 16bit pointer stored in
zeropage into Accu

4B V, Z 2 13

LDA (ZP),X ((ZP)+X) -> A load content of RAM indirectly
addressed by 16bit pointer stored in
zeropage plus X into Accu

33 V, Z 2 14

LDA (ZP),Y ((ZP)+Y) -> A load content of RAM indirectly
addressed by 16bit pointer stored in
zeropage plus Y into Accu

34 V, Z 2 14

LDAA abs (abs) -> A load content of RAM addressed by
abs (16bit) into Accu

32 V, Z 3 8

LDA abs,X (abs+X) -> A load content of RAM addressed by
abs (16bit) plus X into Accu

35 V, Z 3 10

LDA abs,Y (abs+Y) -> A load content of RAM addressed by
abs (16bit) plus Y into Accu

36 V, Z 3 10

LDA ZP (ZP) -> A load content of RAM addressed by
ZP (8bit) into Accu

31 V, Z 2 6

LDAC (ZP),X [(ZP)+X] -> A load content of ROM indirectly
addressed by 16bit pointer stored in
zeropage plus X into Accu

39 V,Z 2 14

LDAC (ZP),Y [(ZP)+Y] -> A load content of ROM indirectly
addressed by 16bit pointer stored in
zeropage plus Y into Accu

3A V,Z 2 14

LDAC abs,X [abs+X] -> A load content of ROM addressed by
abs (16bit) plus X into Accu

37 V, Z 3 10

LDAC abs,Y [abs+Y] -> A load content of ROM addressed by
abs (16bit) plus Y into Accu

38 V, Z 3 10

LDCC abs,X scratch = A
[abs+X] -> A
X = scratch

This OP does the same like
PHA / LDAC abs,X / PLX.
Usefull for CRC16 calculation

4C 3 10

LDX #data data -> X load X-Register immediate 50 V, Z 2 4

LDXA abs (abs) -> X load content of RAM addressed by
abs (16bit) into X-Register

52 V, Z 3 8

LDX abs,Y (abs+Y) -> X load content of RAM addressed by
abs (16bit) plus Y into X-Register

53 V, Z 3 10

LDX ZP (ZP) -> X load content of RAM addressed by
ZP (8bit) into X-Register

51 V, Z 2 6

LDY #data data -> Y load Y-Register immediate 57 V, Z 2 4

LDYA abs (abs) -> Y load content of RAM addressed by
abs (16bit) into Y-Register

59 V, Z 3 8

LDY abs,X (abs+X) -> Y load content of RAM addressed by
abs (16bit) plus X into Y-Register

5A V, Z 3 10

LDY ZP (ZP) -> Y load content of RAM addressed by
ZP (8bit) into Y-Register

58 V, Z 2 6

LPA (X+256*Y) -> A
XY=XY+1

load content of RAM addressed by
X- and Y-Register into Accu and
increment 16 bit pointer

EA V, Z 1 10

2015-07-25 Page 2

DATA-TRANSFER MyCPU OP-Codes

Mnemonic Function Description OP Flags Bytes Cycles

LPT #data data%256 -> X
data/256 -> Y

store 16 bit number immediate
into X- and Y-Register

6C 3 6

LPTA abs (abs) -> X
(abs+1) -> Y

load 16 bit number from RAM
addressed by abs (16 bit) into
X- and Y-Register

6D 3 14

LPT ZP (ZP) -> X
(ZP+1) -> Y

load 16 bit number from RAM
addressed by ZP (8 bit) into
X- and Y-Register

5F 3 10

MOV ZP,#data data -> (ZP) load data immediate to zeropage 48 3 8

MOV ZP1,ZP2 (ZP2) -> (ZP1) copy content of RAM addressed by
ZP2 (8bit) into RAM addressed by
ZP1 (8bit)

47 3 11

STA (ZP),X A -> ((ZP)+X) store Accu into RAM indirectly
addressed by 16bit pointer stored in
zeropage plus X

43 2 14

STA (ZP),Y A -> ((ZP)+Y) store Accu into RAM indirectly
addressed by 16bit pointer stored in
zeropage plus Y

44 2 14

STAA abs A -> (abs) store Accu into RAM addressed by
abs (16bit)

42 3 8

STA abs,X A -> (abs+X) store Accu into RAM addressed by
abs (16bit) plus X

45 3 10

STA abs,Y A -> (abs+Y) store Accu into RAM addressed by
abs (16bit) plus Y

46 3 10

STA ZP A -> (ZP) store Accu into RAM addressed by
ZP (8bit)

41 2 6

STXA abs X -> (abs) store X-Register into RAM
addressed by abs (16bit)

55 3 8

STX abs,Y X -> (abs+Y) store X-Register into RAM
addressed by abs (16bit) plus Y

56 3 10

STX ZP X -> (ZP) store X-Register into RAM
addressed by ZP (8bit)

54 2 6

STYA abs Y -> (abs) store Y-Register into RAM
addressed by abs (16bit)

5C 3 8

STY abs,X Y -> (abs+X) store Y-Register into RAM
addressed by abs (16bit) plus X

5D 3 10

STY ZP Y -> (ZP) store Y-Register into RAM
addressed by ZP (8bit)

5B 2 6

STZ abs
STZA abs

0 -> (abs) store zero into RAM addressed by
abs (16bit)

2F 3 8

SAX A <-> X swap Accu and X-Register 28 1 4

SAY A <-> Y swap Accu and Y-Register 29 1 4

SPA A -> (X+256*Y)
XY=XY+1

store Accu into RAM addressed by
X- and Y-Register and increment
16 bit pointer

FA 1 8

SPTA abs X -> (abs)
Y -> (abs+1)

store 16 bit number stored in X- and
Y-Register into RAM addressed by
abs (16 bit)

6E 3 14

SPT ZP X -> (ZP)
Y -> (ZP+1)

store 16 bit number stored in X- and
Y-Register into RAM addressed by
ZP (8 bit)

6F 3 10

2015-07-25 Page 3

DATA-TRANSFER MyCPU OP-Codes

Mnemonic Function Description OP Flags Bytes Cycles

SWP A = A*16 + A/16 swap high- and low-nibble of Accu 40 V, Z 1 11
SXY X <-> Y swap X- and Y-Register 2A 1 4

TAX A -> X transfer Accu into X-Register 20 V, Z 1 3

TAY A -> Y transfer Accu into Y-Register 22 V, Z 1 3

TSX S -> X transfer Stackpointer into X-Register 26 V, Z 1 3

TXA X -> A transfer X-Register into Accu 21 V, Z 1 3

TXS X -> SP transfer X-Register into Stackpointer 27 V, Z 1 3

TXY X -> Y transfer X- into Y-Register 24 V, Z 1 3

TYA Y -> A transfer Y-Register into Accu 23 V, Z 1 3

TYX Y -> X transfer Y- into X-Register 25 V, Z 1 3

2015-07-25 Page 4

ARITHMETIC MyCPU OP-Codes

Mnemonic Function Description OP Flags Bytes Cycles

ADC #data A = A + data + C add immediate data to Accu 80 C, V, Z 2 4

ADC (ZP),X A = A + ((ZP)+X) + C add content of RAM indirectly
addressed by 16 bit pointer stored in
zeropage plus X to Accu

83 C, V, Z 2 14

ADC (ZP),Y A = A + ((ZP)+Y) + C add content of RAM indirectly
addressed by 16 bit pointer stored in
zeropage plus Y to Accu

84 C, V, Z 2 14

ADCA abs A = A + (abs) + C add content of RAM addressed by
abs (16bit) to Accu

82 C, V, Z 3 8

ADC abs,X A = A + (abs+X) + C add content of RAM addressed by
abs (16bit) plus X to Accu

85 C, V, Z 3 10

ADC abs,Y A = A + (abs+Y) + C add content of RAM addressed by
abs (16bit) plus Y to Accu

86 C, V, Z 3 10

ADC ZP A = A + (ZP) + C add content of RAM addressed by
ZP (8bit) to Accu

81 C, V, Z 2 6

ADCC abs,X A = A + [abs+X] + C add content of ROM addressed by
abs (16bit) plus X to Accu

88 C, V, Z 3 10

ADCC abs,Y A = A + [abs+Y] + C add content of ROM addressed by
abs (16bit) plus Y to Accu

89 C, V, Z 3 10

AND #data A = A AND data logical AND with Accu and
immediate data

D0 V, Z 2 4

AND (ZP),X A = A AND ((ZP)+X) logical AND with Accu and content
of RAM indirectly addressed by 16
bit pointer stored in zeropage plus X

D3 V, Z 2 14

AND (ZP),Y A = A AND ((ZP)+Y) logical AND with Accu and content
of RAM indirectly addressed by 16
bit pointer stored in zeropage plus Y

D4 V, Z 2 14

ANDA abs A = A AND (abs) logical AND with Accu and content
of RAM addressed by abs (16bit)

D2 V, Z 3 8

AND abs,X A = A AND (abs+X) logical AND with Accu and content
of RAM addressed by abs (16bit)
plus X

D5 V, Z 3 10

AND abs,Y A = A AND (abs+Y) logical AND with Accu and content
of RAM addressed by abs (16bit)
plus Y

D6 V, Z 3 10

AND ZP A = A AND (ZP) logical AND with Accu and content
of RAM addressed by ZP (8bit)

D1 V, Z 2 6

ANDC abs,X A = A AND [abs+X] logical AND with Accu and content
of ROM addressed by abs (16bit)
plus X

D8 V, Z 3 10

ANDC abs,Y A = A AND [abs+Y] logical AND with Accu and content
of ROM addressed by abs (16bit)
plus Y

D9 V, Z 3 10

CAX A - X compare Accu with X-Register 68 C, V, Z 1 5

CAY A - Y compare Accu with Y-Register 69 C, V, Z 1 5

CMP #data A - data compare Accu with immediate data 70 C, V, Z 2 5

CMP (ZP),X A - ((ZP)+X) compare Accu with content of RAM
indirectly addressed by 16 bit
pointer stored in zeropage plus X

73 C, V, Z 2 15

CMP (ZP),Y A - ((ZP)+Y) compare Accu with content of RAM
indirectly addressed by 16 bit
pointer stored in zeropage plus Y

74 C, V, Z 2 15

CMPA abs A - (abs) compare Accu with content
of RAM addressed by abs (16bit)

72 C, V, Z 3 8

2015-07-25 Page 5

ARITHMETIC MyCPU OP-Codes

Mnemonic Function Description OP Flags Bytes Cycles

CMP abs,X A - (abs+X) compare Accu with content of RAM
addressed by abs (16bit) plus X

75 C, V, Z 3 11

CMP abs,Y A - (abs+Y) compare Accu with content of RAM
addressed by abs (16bit) plus Y

76 C, V, Z 3 11

CMP ZP A - (ZP) compare Accu with content
of RAM addressed by ZP (8bit)

71 C, V, Z 2 6

CMPC abs,X A - [abs+X] compare Accu with content of ROM
addressed by abs (16bit) plus X

78 C, V, Z 3 11

CMPC abs,Y A - [abs+Y] compare Accu with content of ROM
addressed by abs (16bit) plus Y

79 C, V, Z 3 11

CPX #data X - data compare X-Register with immediate
data

60 C, V, Z 2 5

CPX ZP X - (ZP) compare X-Register with content
of RAM addressed by ZP (8bit)

61 C, V, Z 2 6

CPXA abs X - (abs) compare X-Register with content
of RAM addressed by abs (16bit)

62 C, V, Z 3 8

CPY #data Y - data compare Y-Register with immediate
data

64 C, V, Z 2 5

CPY ZP Y - (ZP) compare Y-Register with content
of RAM addressed by ZP (8bit)

65 C, V, Z 2 6

CPYA abs Y - (abs) compare Y-Register with content
of RAM addressed by abs (16bit)

66 C, V, Z 3 8

CXY X - Y compare X-Register with Y-Register 6A C, V, Z 1 6

DEC A = A - 1 decrement Accu 9B V, Z 1 3

DEC (ZP),X ((ZP)+X) =
((ZP)+X) - 1

decrement the content of RAM
indirectly addressed by 16 bit
pointer stored in zeropage plus X

9E V, Z 2 16

DEC (ZP),Y ((ZP)+Y) =
((ZP)+Y) - 1

decrement the content of RAM
indirectly addressed by 16 bit
pointer stored in zeropage plus Y

9F V, Z 2 16

DECA abs (abs) = (abs) - 1 decrement the content of RAM
addressed by abs (16bit)

8D V, Z 3 10

DEC abs,X (abs+X) = (abs+X) -1 decrement the content of RAM
addressed by abs (16bit) plus X

8E V, Z 3 12

DEC abs,Y (abs+Y) = (abs+Y)-1 decrement the content of RAM
addressed by abs (16bit) plus Y

8F V, Z 3 12

DEC ZP (ZP) = (ZP) - 1 decrement the content of RAM
addressed by ZP (8bit)

8C V, Z 2 8

DEX X = X - 1 decrement X-Register AB V, Z 1 3

DEY Y = Y - 1 decrement Y-Register BB V, Z 1 3

DIV #data A = A / data divide Accu by immediate data B0 V, Z 2 4

DIV (ZP),X A = A / ((ZP)+X) divide Accu by content of RAM
indirectly addressed by 16 bit
pointer stored in zeropage plus X

B3 V, Z 2 14

DIV (ZP),Y A = A / ((ZP)+Y) divide Accu by content of RAM
indirectly addressed by 16 bit
pointer stored in zeropage plus Y

B4 V, Z 2 14

DIVA abs A = A / (abs) divide Accu by content of RAM
addressed by abs (16bit)

B2 V, Z 3 8

DIV abs,X A = A / (abs+X) divide Accu by content of RAM
addressed by abs (16bit) plus X

B5 V, Z 3 10

DIV abs,Y A = A / (abs+Y) divide Accu by content of RAM
addressed by abs (16bit) plus Y

B6 V, Z 3 10

DIV ZP A = A / (ZP) divide Accu by content of RAM
addressed by ZP (8bit)

B1 V, Z 2 6

2015-07-25 Page 6

ARITHMETIC MyCPU OP-Codes

Mnemonic Function Description OP Flags Bytes Cycles

DIVC abs,X A = A / [abs+X] divide Accu by content of ROM
addressed by abs (16bit) plus X

B8 V, Z 3 10

DIVC abs,Y A = A / [abs+Y] divide Accu by content of ROM
addressed by abs (16bit) plus Y

B9 V, Z 3 10

EOR #data A = A EOR data logical AND with Accu and
immediate data

F0 V, Z 2 4

EOR (ZP),X A = A EOR ((ZP)+X) logical exclusive OR with Accu and
content of RAM indirectly addressed
by 16 bit pointer stored in zeropage
plus X

F3 V, Z 2 14

EOR (ZP),Y A = A EOR ((ZP)+Y) logical exclusive OR with Accu and
content of RAM indirectly addressed
by 16 bit pointer stored in zeropage
plus Y

F4 V, Z 2 14

EORA abs A = A EOR (abs) logical exclusive OR with Accu and
content of RAM addressed by abs
(16bit)

F2 V, Z 3 8

EOR abs,X A = A EOR (abs+X) logical exclusive OR with Accu and
content of RAM addressed by abs
(16bit) plus X

F5 V, Z 3 10

EOR abs,Y A = A EOR (abs+Y) logical exclusive OR with Accu and
content of RAM addressed by abs
(16bit) plus Y

F6 V, Z 3 10

EOR ZP A = A EOR (ZP) logical exclusive OR with Accu and
content of RAM addressed by ZP
(8bit)

F1 V, Z 2 6

EORC abs,X A = A EOR [abs+X] logical exclusive OR with Accu and
content of ROM addressed by abs
(16bit) plus X

F8 V, Z 3 10

EORC abs,Y A = A EOR [abs+Y] logical exclusive OR with Accu and
content of ROM addressed by abs
(16bit) plus Y

F9 V, Z 3 10

INC A = A + 1 increment Accu 6B V, Z 1 3

INC (ZP),X ((ZP)+X) =
((ZP)+X) + 1

increment the content of RAM
indirectly addressed by 16 bit
pointer stored in zeropage plus X

9C V, Z 2 16

INC (ZP),Y ((ZP)+Y) =
((ZP)+Y) + 1

increment the content of RAM
indirectly addressed by 16 bit
pointer stored in zeropage plus Y

9D V, Z 2 16

INCA abs (abs) = (abs) + 1 increment the content of RAM
addressed by abs (16bit)

7D V, Z 3 10

INC abs,X (abs+X) = (abs+X) +1 increment the content of RAM
addressed by abs (16bit) plus X

7E V, Z 3 12

INC abs,Y (abs+Y) = (abs+Y)+1 increment the content of RAM
addressed by abs (16bit) plus Y

7F V, Z 3 12

INC ZP (ZP) = (ZP) + 1 increment the content of RAM
addressed by ZP (8bit)

7C V, Z 2 8

INX X = X + 1 increment X-Register 7B V, Z 1 3

INY Y = Y + 1 increment Y-Register 8B V, Z 1 3

2015-07-25 Page 7

ARITHMETIC MyCPU OP-Codes

Mnemonic Function Description OP Flags Bytes Cycles

MOD #data A = A % data Accu modulo immediate data C0 V, Z 2 8
MOD (ZP),X A = A % ((ZP)+X) Accu modulo content of RAM

indirectly addressed by 16 bit
pointer stored in zeropage plus X

C3 V, Z 2 18

MOD (ZP),Y A = A % ((ZP)+Y) Accu modulo content of RAM
indirectly addressed by 16 bit
pointer stored in zeropage plus Y

C4 V, Z 2 18

MODA abs A = A % (abs) Accu modulo content of RAM
addressed by abs (16bit)

C2 V, Z 3 12

MOD abs,X A = A % (abs+X) Accu modulo content of RAM
addressed by abs (16bit) plus X

C5 V, Z 3 14

MOD abs,Y A = A % (abs+Y) Accu modulo content of RAM
addressed by abs (16bit) plus Y

C6 V, Z 3 14

MOD ZP A = A % (ZP) Accu modulo content of RAM
addressed by ZP (8bit)

C1 V, Z 2 10

MODC abs,X A = A % [abs+X] Accu modulo content of ROM
addressed by abs (16bit) plus X

C8 V, Z 3 14

MODC abs,Y A = A % [abs+Y] Accu modulo content of ROM
addressed by abs (16bit) plus Y

C9 V, Z 3 14

MUL #data A = (A * data) % 256
if (C=1)
 X = (A * data) / 256

multiply Accu with immediate data A0 V, Z 2 4 / 6

MUL (ZP),X A =
(A * ((ZP)+X)) % 256
if (C=1)
 Y = (A * data) / 256

multiply Accu with content of RAM
indirectly addressed by 16bit pointer
stored in zeropage plus X

A3 V, Z 2 14 / 16

MUL (ZP),Y A =
(A * ((ZP)+Y)) % 256
if (C=1) {see MUL #}

multiply Accu with content of RAM
indirectly addressed by 16bit pointer
stored in zeropage plus Y

A4 V, Z 2 14 / 16

MULA abs A = (A * (abs)) %256
if (C=1) {see MUL #}

multiply Accu with content of RAM
addressed by abs (16bit)

A2 V, Z 3 8 / 10

MUL abs,X A =
(A * (abs+X)) % 256
if (C=1)
 Y = (A * data) / 256

multiply Accu with content of RAM
addressed by abs (16bit) plus X

A5 V, Z 3 10 / 12

MUL abs,Y A =
(A * (abs+Y)) % 256
if (C=1) {see MUL #}

multiply Accu with content of RAM
addressed by abs (16bit) plus Y

A6 V, Z 3 10 / 12

MUL ZP A = (A + (ZP)) % 256
if (C=1) {see MUL #}

multiply Accu with content of RAM
addressed by ZP (8bit)

A1 V, Z 2 6 / 8

MULC abs,X A =
(A + [abs+X]) % 256
if (C=1)
 Y = (A * data) / 256

multiply Accu with content of ROM
addressed by abs (16bit) plus X

A8 V, Z 3 10 / 12

MULC abs,Y A =
(A + [abs+Y]) % 256
if (C=1)
 X = (A * data) / 256

multiply Accu with content of ROM
addressed by abs (16bit) plus Y

A9 V, Z 3 10 / 12

ORA #data A = A OR data logical OR with Accu and
immediate data

E0 V, Z 2 4

ORA (ZP),X A = A OR ((ZP)+X) logical OR with Accu and content
of RAM indirectly addressed by 16
bit pointer stored in zeropage plus X

E3 V, Z 2 14

ORA (ZP),Y A = A OR ((ZP)+Y) logical OR with Accu and content
of RAM indirectly addressed by 16
bit pointer stored in zeropage plus Y

E4 V, Z 2 14

2015-07-25 Page 8

ARITHMETIC MyCPU OP-Codes

Mnemonic Function Description OP Flags Bytes Cycles

ORAA abs A = A OR (abs) logical OR with Accu and content
of RAM addressed by abs (16bit)

E2 V, Z 3 8

ORA abs,X A = A OR (abs+X) logical OR with Accu and content
of RAM addressed by abs (16bit)
plus X

E5 V, Z 3 10

ORA abs,Y A = A OR (abs+Y) logical OR with Accu and content
of RAM addressed by abs (16bit)
plus Y

E6 V, Z 3 10

ORA ZP A = A OR (ZP) logical OR with Accu and content
of RAM addressed by ZP (8bit)

E1 V, Z 2 6

ORAC abs,X A = A OR [abs+X] logical OR with Accu and content
of ROM addressed by abs (16bit)
plus X

E8 V, Z 3 10

ORAC abs,Y A = A OR [abs+Y] logical OR with Accu and content
of ROM addressed by abs (16bit)
plus Y

E9 V, Z 3 10

SBC #data A = A - data - 1 + C subtract immediate data from Accu 90 C, V, Z 2 4

SBC (ZP),X A =
A - ((ZP)+X) - 1 + C

subtract content of RAM indirectly
addressed by 16 bit pointer stored in
zeropage plus X from Accu

93 C, V, Z 2 14

SBC (ZP),Y A =
A - ((ZP)+Y) - 1 + C

subtract content of RAM indirectly
addressed by 16 bit pointer stored in
zeropage plus Y from Accu

94 C, V, Z 2 14

SBCA abs A =
A + (abs) - 1 + C

subtract content of RAM addressed
by abs (16bit) from Accu

92 C, V, Z 3 8

SBC abs,X A =
A + (abs+X) - 1 + C

subtract content of RAM addressed
by abs (16bit) plus X from Accu

95 C, V, Z 3 10

SBC abs,Y A =
A + (abs+Y) - 1 + C

subtract content of RAM addressed
by abs (16bit) plus Y from Accu

96 C, V, Z 3 10

SBC ZP A =
A + (ZP) - 1 + C

subtract content of RAM addressed
by ZP (8bit) from Accu

91 C, V, Z 2 6

SBCC abs,X A =
A + [abs+X] - 1 + C

subtract content of ROM addressed
by abs (16bit) plus X from Accu

98 C, V, Z 3 10

SBCC abs,Y A =
A + [abs+Y] - 1 + C

subtract content of ROM addressed
by abs (16bit) plus Y from Accu

99 C, V, Z 3 10

SHL A = A * 2 shift left Accu. highest bit will be
stored in carry.

CB C, V, Z 1 3

SHL (ZP),X ((ZP)+X) =
((ZP)+X) * 2

shift left the content of RAM
indirectly addressed by 16 bit
pointer stored in zeropage plus X.
highest bit will be stored in carry.

CC C, V, Z 2 16

SHL (ZP),Y ((ZP)+Y) =
((ZP)+Y) * 2

shift left the content of RAM
indirectly addressed by 16 bit
pointer stored in zeropage plus Y.
highest bit will be stored in carry.

CD C, V, Z 2 16

SHLA abs (abs) = (abs) * 2 shift left the content of RAM
addressed by abs (16bit). highest
bit will be stored in carry.

AD C, V, Z 3 10

SHL abs,X (abs+X) = (abs+X) * 2 shift left the content of RAM
addressed by abs (16bit) plus X.
highest bit will be stored in carry.

AE C, V, Z 3 12

SHL abs,Y (abs+Y) = (abs+Y) *2 shift left the content of RAM
addressed by abs (16bit) plus Y.
highest bit will be stored in carry.

AF C, V, Z 3 12

2015-07-25 Page 9

ARITHMETIC MyCPU OP-Codes

Mnemonic Function Description OP Flags Bytes Cycles

SHL ZP (ZP) = (ZP) * 2 shift left the content of RAM
addressed by ZP (8bit). highest
bit will be stored in carry.

AC C, V, Z 2 8

SHR A = A / 2 shift right Accu. lowest bit will be
stored in carry.

DB C, V, Z 1 3

SHR (ZP),X ((ZP)+X) =
((ZP)+X) / 2

shift right the content of RAM
indirectly addressed by 16 bit
pointer stored in zeropage plus X.
lowest bit will be stored in carry.

CE C, V, Z 2 16

SHR (ZP),Y ((ZP)+Y) =
((ZP)+Y) / 2

shift right the content of RAM
indirectly addressed by 16 bit
pointer stored in zeropage plus Y.
lowest bit will be stored in carry.

CF C, V, Z 2 16

SHRA abs (abs) = (abs) / 2 shift right the content of RAM
addressed by abs (16bit). lowest
bit will be stored in carry.

BD C, V, Z 3 10

SHR abs,X (abs+X) = (abs+X) / 2 shift right the content of RAM
addressed by abs (16bit) plus X.
lowest bit will be stored in carry.

BE C, V, Z 3 12

SHR abs,Y (abs+Y) = (abs+Y) /2 shift right the content of RAM
addressed by abs (16bit) plus Y.
lowest bit will be stored in carry.

BF C, V, Z 3 12

SHR ZP (ZP) = (ZP) / 2 shift right the content of RAM
addressed by ZP (8bit). lowest
bit will be stored in carry.

BC C, V, Z 2 8

ROL A = A * 2 + C rotate left Accu. highest bit will be
stored in carry.

EB C, V, Z 1 3

ROL (ZP),X ((ZP)+X) =
((ZP)+X) * 2 + C

rotate left the content of RAM
indirectly addressed by 16 bit
pointer stored in zeropage plus X.
highest bit will be stored in carry.

FC C, V, Z 2 16

ROL (ZP),Y ((ZP)+Y) =
((ZP)+Y) * 2 + C

rotate left the content of RAM
indirectly addressed by 16 bit
pointer stored in zeropage plus Y.
highest bit will be stored in carry.

FD C, V, Z 2 16

ROLA abs (abs) = (abs) * 2 + C rotate left the content of RAM
addressed by abs (16bit). highest
bit will be stored in carry.

DD C, V, Z 3 10

ROL abs,X (abs+X) =
(abs+X) * 2 + C

rotate left the content of RAM
addressed by abs (16bit) plus X.
highest bit will be stored in carry.

DE C, V, Z 3 12

ROL abs,Y (abs+Y) =
(abs+Y) * 2 + C

rotate left the content of RAM
addressed by abs (16bit) plus Y.
highest bit will be stored in carry.

DF C, V, Z 3 12

ROL ZP (ZP) = (ZP) * 2 + C rotate left the content of RAM
addressed by ZP (8bit). highest
bit will be stored in carry.

DC C, V, Z 2 8

ROR A = A / 2 + C * 80h rotate right Accu. lowest bit will be
stored in carry.

FB C, V, Z 1 3

ROR (ZP),X ((ZP)+X) =
((ZP)+X) / 2 + C *80h

rotate right the content of RAM
indirectly addressed by 16 bit
pointer stored in zeropage plus X.
lowest bit will be stored in carry.

FE C, V, Z 2 16

2015-07-25 Page 10

ARITHMETIC MyCPU OP-Codes

Mnemonic Function Description OP Flags Bytes Cycles

ROR (ZP),Y ((ZP)+Y) =
((ZP)+Y) / 2 + C *80h

rotate right the content of RAM
indirectly addressed by 16 bit
pointer stored in zeropage plus Y.
lowest bit will be stored in carry.

FF C, V, Z 2 16

RORA abs (abs) =
(abs) / 2 + C * 80h

rotate right the content of RAM
addressed by abs (16bit). lowest
bit will be stored in carry.

ED C, V, Z 3 10

ROR abs,X (abs+X) =
(abs+X) / 2 + C * 80h

rotate right the content of RAM
addressed by abs (16bit) plus X.
lowest bit will be stored in carry.

EE C, V, Z 3 12

ROR abs,Y (abs+Y) =
(abs+Y) /2 + C * 80h

rotate right the content of RAM
addressed by abs (16bit) plus Y.
lowest bit will be stored in carry.

EF C, V, Z 3 12

ROR ZP (ZP) =
(ZP) / 2 + C * 80h

rotate right the content of RAM
addressed by ZP (8bit). lowest
bit will be stored in carry.

EC C, V, Z 2 8

2015-07-25 Page 11

FLAGS MyCPU OP-Codes

Mnemonic Function Description OP Flags Bytes Cycles

BIT ZP, #data (ZP) AND data logical AND with RAM (ZP = 8bit
address) and immediate data

5E V, Z 3 8

CLC C = 0 clear the carry flag 04 C 1 3

CLI I = 0 disable interrupt 02 I 1 3

CLZ if Z = 1 then Z = 0 clear the zero flag 06 Z 1 3 / 4

FLG ZP Z=1 if (ZP) is zero,
V=1 if bit7 is set

set flags according to the content of
the RAM addressed by ZP (8bit)

3C V, Z 2 6

FLS ZP Z=1 if (ZP) is zero,
V=1 if bit6 is set

set flags according to the content of
the RAM addressed by ZP (8bit)

3D V, Z 2 16

PHP Flags -> (SP)
SP = SP - 1

push flags (C, V, Z) to stack 0B 1 6

PLP SP = SP + 1
(SP) -> Flags

pull flags (C, V, Z) from stack 0F C, V, Z 1 7

SEC if C = 0 then C = 1 set the carry flag 05 C 1 3

SEI I = 1 enable interrupt 03 I 1 3

SEZ if Z = 0 then Z = 1 set the zero flag 07 Z 1 3 / 4

JNC abs if C=0 then PC=abs jump if carry flag is not set 16 3 4 / 7

JNV abs if V=0 then PC=abs jump if sign flag is not set 14 3 4 / 7

JNZ abs if Z=0 then PC=abs jump if zero flag is not set 18 3 4 / 7

JPC abs if C=1 then PC=abs jump if carry flag is set 17 3 4 / 7

JPV abs if V=1 then PC=abs jump if sign flag is set 15 3 4 / 7

JPZ abs if Z=1 then PC=abs jump if zero flag is set 19 3 4 / 7

2015-07-25 Page 12

STACK MyCPU OP-Codes

Mnemonic Function Description OP Flags Bytes Cycles

INS #value SP = SP + value increment stackpointer by value DA 2 5

PHA A -> (SP)
SP = SP - 1

push Accu to stack 08 1 6

PHP Flags -> (SP)
SP = SP - 1

push flags (C, V, Z) to stack 0B 1 6

PHR A -> (SP)
X -> (SP-1)
Y -> (SP-2)
SP = SP - 3

push Accu, X- and Y-Register
to stack

7A 1 12

PHX X -> (SP)
SP = SP - 1

push X-Register to stack 09 1 6

PHY Y -> (SP)
SP = SP - 1

push Y-Register to stack 0A 1 6

PLP SP = SP + 1
(SP) -> Flags

load flags (C, V, Z) from stack 0F C, V, Z 1 7

PLA SP = SP + 1
(SP) -> A

load Accu from stack 0C V, Z 1 7

PLR (SP+1) -> Y
(SP+2) -> X
(SP+3) -> A
SP = SP + 3

load Accu, X- and Y-Register
from stack

8A 1 13

PLX SP = SP + 1
(SP) -> X

load X-Register from stack 0D V, Z 1 7

PLY SP = SP + 1
(SP) -> Y

load Y-Register from stack 0E V, Z 1 7

POP ZP SP = SP + 1
(SP) -> (ZP)

load data from stack and write it into
RAM addressed by ZP (8bit)

AA 2 11

PUSA # data / 256 -> (SP)
data % 256 -> (SP-1)
SP = SP -2

push immediate data to stack CA 3 13

PUSH # data -> (SP)
SP = SP - 1

push immediate data to stack BA 2 7

PUSH ZP (ZP) -> (SP)
SP = SP - 1

push content of RAM addressed
by ZP (8bit) to stack

9A 2 10

SBK abs,# (abs & FF00h) -> (SP)
SP = SP - 1
data -> (abs & FF00h)

Save bank-select register content to
stack and set new value. Register
must be at a page boundary.

3E 3 14

RBK abs SP = SP + 1
(SP) -> (abs & FF00h)

Restore bank-select register. Register
must be at a page boundary.

3F 2 11

2015-07-25 Page 13

PROGRAM CONTROL MyCPU OP-Codes

Mnemonic Function Description OP Flags Bytes Cycles

BRK flags -> (SP)
PC(hi) -> (SP-1)
PC(lo) -> (SP-2)
SP = SP - 3
PC = (0006h)

execute break interrupt 00 1 19

DLY do Y=Y-1 while Y<>0 delay program execution 3B V, Z 1 9*Y

DXJP abs X = X - 1,
if (X<>0) then PC=abs

Decrement X and jump if X is not
zero.

49 V, Z 3 7

DYJP abs Y = Y - 1,
if (Y<>0) then PC=abs

Decrement Y and jump if Y is not
zero.

4A V, Z 3 7

JMP (abs) PC = (abs) jump to indirect address. the pointer
is stored in RAM

11 3 14

JMP (abs,X) PC = (abs+X) jump to indirect address stored in
RAM at position abs+X

12 3 17

JMP abs PC = abs jump to direct address 10 3 7

JMPC (abs,X) PC = [abs+X] jump to indirect address stored in
ROM at position abs+X

13 3 17

JNC abs if C=0 then PC=abs jump if carry flag is not set 16 3 4 / 7

JNV abs if V=0 then PC=abs jump if sign flag is not set 14 3 4 / 7

JNZ abs if Z=0 then PC=abs jump if zero flag is not set 18 3 4 / 7

JPC abs if C=1 then PC=abs jump if carry flag is not set 17 3 4 / 7

JPV abs if V=1 then PC=abs jump if sign flag is not set 15 3 4 / 7

JPZ abs if Z=1 then PC=abs jump if zero flag is not set 19 3 4 / 7

JSR (abs) PC-1 / 256 -> (SP)
PC-1 %256 ->(SP-1)
SP = SP - 2
PC = (abs)

jump to indirectly addressed
subroutine. the pointer to the
subroutine is stored in RAM.

1B 3 20

JSR abs PC-1 / 256 -> (SP)
PC-1 %256 ->(SP-1)
SP = SP - 2
PC = abs

jump to direct addressed subroutine 1A 3 11

NOP no operation 01 1 3

RTB (SP+1) -> PC(lo)
(SP+2) -> PC(hi)
(SP+3) -> flags
SP = SP + 3

return from break interrupt 1D 1 13

RTI (SP+1) -> PC(lo)
(SP+2) -> PC(hi)
(SP+3) -> flags
SP = SP + 3
I = 1

return from interrupt and enable
interrupt again

1E 1 13

RTS (SP+1) -> PC(lo)
(SP+2) -> PC(hi)
SP = SP + 2
PC = PC + 1

return from subroutine 1F 1 12

SKA PC = PC + 1 skip one byte 4D 1 3

SKB PC = PC + 2 skip two bytes 4E 1 4

SKC PC = PC + 3 skip three bytes 4F 1 5

TSTC abs,X A AND [abs+X] logical AND with Accu and content
of ROM addressed by abs (16bit)
plus X

1C V, Z 3 10

2015-07-25 Page 14

USER DEFINED OP-CODES MyCPU OP-Codes

Mnemonic Function Description OP Flags Bytes Cycles

 reserved reserved Reserved for future use,
 use at your own risk!

2B

 reserved reserved Reserved for future use,
 use at your own risk!

63

 reserved reserved Reserved for future use,
 use at your own risk!

67

77

87

97

A7

B7

C7

D7

E7

F7

Please use this table to write down your own OP-Code definitions.

2015-07-25 Page 15

